Journal of Organometallic Chemistry, 127 (1977) 19–31 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METALLORGANISCHE DIAZOALKANE

XIII *. REAKTIONEN METALLORGANISCHER DIAZOALKANE MIT $P(NMe_2)_3$ ZU METALLORGANISCHEN PHOSPHAZINEN $L_nM(R)C=N-N=P(NMe_2)_3$

PETER KROMMES und JÖRG LORBERTH *

Fachbereich Chemie der Philipps-Universität Marburg, D-3550 Marburg/Lahn, Lahnberge (B.R.D.)

(Eingegangen den 19. Juli 1976)

Summary

Staudinger reactions of 20 organometallic diazoalkanes and of their parent compounds CH_2N_2 , $HC(N_2)CO_2Et$, $HC(N_2)C(O)Me$ and $HC(N_2)C(O)Ph$ with a strong basic phosphine $P(NMe_2)_3$ are described and were classified into five groups 1-5 of different reactivity.

Mono-diazomethanes L_nMCHN_2 (for $L_nM = Me_3Si$ —, Me_2As —) react to give (cis, trans) isomers of the corresponding phosphazines $L_nMC(H)=N-N=P(NMe_2)_3$; a stepwise reaction of functional diazogroups in organometallic bis-diazoalkanes, e.g. Hg[C(N_2)CO_2Et]_2, has been observed.

Different reactivity of organometallic diazoalkanes cannot be rationalized by known spectroscopic data but can be interpreted by steric effects. In analogy to reactions of isoelectronic azides a transition state of the Staudinger reaction is suggested with an attack of the basic phosphine at the electrophilic α -nitrogen atom and following rearrangement into the N_g-Staudinger adduct.

Trimethylgermaniumdiazomethane, Me₃GeCHN₂, was obtained as a novel monosubstituted organometallic diazoalkane and is fully characterized.

Zusammenfassung

Staudinger Reaktionen von 20 metallorganischen Diazoalkanen sowie von deren organischen Grundkörpern CH_2N_2 , $HC(N_2)CO_2Et$, $HC(N_2)C(O)Me$ und $HC(N_2)C(O)Ph$ mit dem stark basischen Phosphin $P(NMe_2)_3$ werden beschrieben und in unterschiedliche Reaktionsgruppen 1-5 unterteilt.

Mono-Diazomethane L_nMCHN_2 (für $L_nM = Me_3Si-$, Me_2As-) ergeben dabei cis-, trans-Isomerengemische der entsprechenden Phosphazine $L_nMC(H)=N-N=$

* Teil XII s. Lit. 16.

 $P(NMe_2)_3$; in Organometall-bis-diazoalkanen, z.B. $Hg[C(N_2)CO_2Et]_2$, reagieren die Diazofunktionen in abgestufter Reihenfolge.

Das unterschiedliche Reaktionsverhalten metallorganischer Diazoalkane lässt sich nicht mit bekannten spektroskopischen Befunden, sondern durch sterische Effekte deuten; in Analogie zu Reaktionen isoelektronischer Azide schlagen wir als Übergangszustand der Staudinger Reaktion mit Diazoalkanen einen Angriff des basischen Phosphins am elektrophilen a-Stickstoffatom mit anschliessender Umwandlung in das N_g-Staudinger-Addukt vor.

Trimethylgermaniumdiazomethan, Me₃GeCHN₂, wurde als neues monosubstituiertes metallorganisches Diazomethan dargestellt und charakterisiert.

I. Einleitung

Diazoalkane sind hochreaktive Grundkörper mit spezifischen Reaktionsmerkmalen; zu diesen zählen u.a. Carbenreaktionen [1-4], 1,3-dipolare Cycloadditionen (Huisgen-Reaktion) [5,6] sowie die Bildung von Phosphazinen (Staudinger Reaktion) [7,8]. Während von metallorganischen Diazoalkanen zum Problem der Carbenbildung [9,10] und der Cycloadditionen [11] neuere Arbeiten bekannt sind, ist die Phosphazinreaktion nur an wenigen Beispielen untersucht worden [12].

Die Umsetzung von Diazoalkanen mit Phosphinen verläuft nach Gl. 1 wobei die Reaktionsgeschwindigkeit im wesentlichen von der Basizität des eingesetzten Phosphins abhängt [13].

 $\overline{C} \rightarrow N \equiv N + PR_3 \neq C \equiv N \rightarrow N \equiv PR_3$

(1)

HC(N₂)C(O)Ph

o

0

n

O

0

O

0

0

(+)

Die erhaltenen Phosphazine lassen sich mit MeJ nach Gl. 2 teilweise zu den reinen Diazoalkanen spalten [8] (Methode zur Reindarstellung empfindlicher Diazoalkane).

		an, o = ment untersuch	•
Metallorg. Rest	CH ₂ N ₂	Diazokomponenter	1
		HC(N ₂)CO ₂ Et	HC(N ₂)C(O)Me
Me ₃ Si—	mono: (+) cis,trans bis: (—)	()	G
Me3Ge—	mono: (+) <i>cis</i> . bis: ()	()	ō
Me ₃ Sn—	()	(—)	0
Me ₃ Pb	()	()	0
Me ₂ As-	mono: (+) cis,trans bis: ()	(+)	0

(+)

(--)

(+)

1X 2X

(+) (+)

0

0

0

(+)

TABELLE 1

Me2Sb

Me₂Bi-

MeHg-

Hg-

(+) positiv verl. Rkt.; (--) negativ verl. Rkt.; 0 = nicht u

(--)

(<u>)</u>

n

$$C=N-N=PR_3 + MeJ \rightarrow \widetilde{C}-N=N+R_3MeP^{+}J^{-}$$

In unseren Untersuchungen wurde $P(NMe_2)_3$ als stark basische Phosphinkomponente in Kombination mit 20 metallorganischen Diazoalkanen sowie deren rein organischen Grundkörpern eingesetzt.

II. Ergebnisse und Diskussion

Während mit diesen rein organischen Diazoalkanen erwartungsgemäss in spontan ablaufenden Reaktionen die gewünschten Phosphazine erhalten wurden, war das Reaktionsverhalten metallorganischer Diazoalkane wesentlich differenzierter (Tabelle 1).

Nach dem Reaktionsverhalten lt. Tabelle 1 teilen wir die untersuchten metallorganischen Diazoalkane in fünf Gruppen ein:

Die mit den bislang vorliegenden spektroskopischen Daten [14–17] (PE, IR, NMR) gemachten Aussagen über Bindungsverhältnisse in metallorganischen Diazoalkanen korrelieren aber nicht mit den oben gezeigten Ergebnissen, hingegen lassen sich durch die Variation der Substituenten am Diazokohlenstoffatom eindeutig sterische Einflüsse aufzeigen: Befinden sich zwei voluminöse Liganden (Gruppe 1 und 3) am α -C-Atom, so erfolgt keine Reaktion. Bei Anwesenheit wenigstens eines sehr kleinen Substituenten (Gruppe 2 und die vier organischen Grundkörper) erfolgt immer Phosphazinbildung. Zunehmende Grösse des am Diazokohlenstoffatom gebundenen Metallatoms, z.B. innerhalb der VB-Elemente (Gruppe 5) und zunehmende Substituentenzahl am Metallatom in der Reihe RM– (*sp*-hybridisiertes Hg-Atom) < R₂M– (*sp*²-hybridisiertes As, Sb, Bi-Atom) < R₃M– (*sp*³-hybridisiertes Si, Ge, Sn, Pb-Atom) erschweren die Phosphazinbildung in dieser Reihenfolge (Gruppen 4 < 5 < 3). Bei einem Reaktionsverlauf über das β -Stickstoffatom des Diazoalkans kann aber auf Grund von Modellbetrachtungen weder im Übergangszustand noch im Endprodukt eine sterische Hinderung statt-

21

(2)

finden, wohl aber wenn man als Zwischenstufe einen Angriff auf das α -Stickstoffatom postuliert.

1. Betrachtungen zum Reaktionsmechanismus der Phosphazinbildung

Die Beobachtungen über den die Reaktionsgeschwindigkeit erhöhenden Einfluss basischer Phosphine sowie unsere eigenen Aussagen über die Elektronendichteverteilung in metallorganischen Diazoalkanen [17], exemplarisch durchgeführt am Beispiel des (Me₃Sn)₂CN₂[PE-, IR-, (¹³C-, ¹H-, ¹⁵N-, ¹¹⁹Sn-) NMR-, ¹¹⁹Sn-Mössbauer-Spektroskopie], die eine Ladungsverteilung nach $R_2\overline{C}$ —N \equiv N| belegen, lassen Rückschlüsse auf die Art des Übergangszustandes der Phosphazinbildung zu:

$$R_{2}\overline{\overline{C}} - \overline{N} \equiv NI + PR'_{3} \rightarrow \begin{bmatrix} R_{2}\overline{\overline{C}} - \overline{N}_{\alpha} \equiv NI_{\beta} \\ \uparrow \\ PR'_{3} \end{bmatrix} \rightarrow R_{2}C = \overline{N} - \overline{N} = PR'_{3}$$
(3)

Ähnliche Überlegungen wurden bei Staudinger-Addukten aus den isoelektronischen Aziden RN_3 mit P(NMe₂)₃ zur Ordnung des Übergangszustandes vor Umlagerung und Abspaltung von N₂ vorgestellt [18]:

$$PhN_{3} + P(NMe_{2})_{3} \rightarrow \begin{bmatrix} \delta - & \delta + \\ PhN - - - P(NMe_{2})_{3} \end{bmatrix} \rightarrow PhN = P(NMe_{2})_{3} + N_{2}$$
(4)

2. Über cis, trans-isomere Phosphazine

Aus dem ¹H-NMR-Spektrum des rein organischen Phosphazins $(Me_2N)_3P=N-N=CH_2$ geht eindeutig hervor, dass um das Bindungsgerüst

keine freie Drehbarkeit besteht [19], s. Fig. 1, 2.

Die Protonen H_a bzw. H_b besitzen unterschiedliche chemische Verschiebung $\delta(H_a)$ 7.17 ppm und $\delta(H_b)$ 6.1 ppm; sie koppeln miteinander mit einer Frequenz von 15 Hz und erfahren in *cis*- bzw. *trans*-Stellung unterschiedliche "long-range"-Kopplung mit dem Phosphoratom: ⁴J(P,H_a) 2.5 Hz; ⁴J(P,H_b) 5.0 Hz [19]. Damit lässt sich die absolute Konfiguration aller Phosphazine R₃P=N-N=C(H)R' mit einem Proton am Diazokohlenstoffatom festlegen, z.B.

R≙	—C(O)Me	-CO ₂ Et	—C(O)Ph	-AsMe ₂	-GeMe ₃	-SiMe3
Position (H)	cis	cis	cis	cis/trans	cis	cis/trans
cīs, trans			· · · · ·	1:1		≈15:1

Für Phosphazine des Typs $R_3P=N-N=C(R')M(CH_3)_n$ (wobei $R \neq H!$) ist eine absolute sterische Zuordnung von R' bzw. $M(CH_3)_n$ cis oder trans zur PR₃-Gruppierung nicht möglich. Es entsteht aber immer nur eines der beiden denkbaren Isomeren; diese Aussagen ermöglichen uns die ¹H-NMR-Spektren, in denen für

22

cis- bzw. trans-ständige Methyl-Metall-Protonen $M(CH_3)_n$ nur ein einziges Signal erscheint, ganz im Gegensatz zu den beschriebenen Isomerengemischen von cis, trans- $(Me_2N)_3P=N-N=C(H)SiMe_3$ und cis, trans- $(Me_2N)_3P=N-N=C(H)AsMe_2$ [12], wo zwei verschiedene Methyl-Metall-Resonanzsignale zu finden sind. Da unterschiedliche Kopplungskonstanten für H_a bzw. H_b (in Fig. 1 und 2) neben dem bekannten Phänomen der cis, trans-Kopplung auch durch Wasserstoffbrückenbindungen hervorrerufen werden könnten (Fig. 3), wurde in einem Kontrollver-

bindungen hervorgerufen werden könnten (Fig. 3), wurde in einem Kontrollversuch $Me_3P=N-N=CH_2$ synthetisiert und kernresonanzspektroskopisch vermessen. Da in dieser Verbindung Wasserstoffbrückenbindungseffekte zu vernach-

Fig. 2. Aufspaltungsmuster der Methylenprotonen in Phosphazinen.

Fig. 3. Modell für eine mögliche Wasserstoffbrückenbindung in Phosphazinen.

lässigen sind, jedoch unterschiedliche Kopplungen ${}^{4}J(P,H_{a}) \neq {}^{4}J(P,H_{b})$ auftreten, finden wir unsere oben gemachten Annahmen bestätigt.

3. Stufenweise Phosphazinbildung

Im Quecksilber-bi₃(diazoessigester) stehen zwei Diazofunktionen für deine Phos phazinbildung zur Verfügung; durch Anwendung stöchiometrischer Mengen $P(NMe_2)_3$ gelingt es zum ersten Mal eine Diazofunktion und eine Phosphazingruppierung in einem Molekül zu vereinen. Lässt man dieses 1 : 2 Addukt mit einem weiteren Äquivalent $P(NMe_2)_3$ reagieren bzw. setzt man $Hg[C(N_2)CO_2Et]_2$ von vorneherein mit überschüssigem Phosphin um, so erhält man unmittelbar das Quecksilber-bis(phosphazin)addukt:

$$CO_{2}Et$$

$$Hg[C(N_{2})CO_{2}Et]_{2} + P(NMe_{2})_{3} \rightarrow (Me_{2}N)_{3}P = N - N = C - Hg - C(N_{2})CO_{2}Et$$
(5)
(A)

A + überschüss. $P(NMe_2)_3 \rightarrow [(Me_2N)_3P = N - N = C(CO_2Et) -]_2Hg$ (6)

4. Darstellung und Charakterisierung von Me₃GeCHN₂

Hinweise auf eine mögliche Existenz von Me₃GeCHN₂ erhielten wir aus den ¹³C-NMR-Spektren von CH₂N₂ und (Me₃Ge)₂CN₂ [16]. Ermutigt durch die erfolgreiche Darstellung von Me₂AsCHN₂ [12] synthetisierten wir Me₃GeCHN₂ nach Gl. 7.

$$Me_{3}GeNMe_{2} + CH_{2}N_{2} \xrightarrow{+Me_{3}SnCl} Me_{3}GeCHN_{2}$$
(7)

Aus Me₃GeCHN₂ erhält man in glatter Reaktion (Gl. 8) das bereits beschriebene $(Me_3Ge)_2CN_2$ [20]:

$$Me_{3}GeCHN_{2} + Me_{3}GeNMe_{2} \xrightarrow{+Me_{3}SnCl} (Me_{3}Ge)_{2}CN_{2}$$
(8)

Versuche zur Darstellung gemischter Diazoalkane (Me₃Ge)(L_n M)CN₂ bzw. (Me₂As)(L_n M)CN₂ in analogen Reaktionen sind zur Zeit im Gange [21].

III. Experimentelles

1. Spektroskopie

Alle aufgeführten Verbindungen wurden durch Elementaranalysen, IR-, NMR-(¹³C, ¹H) und Massenspektren vollständig charakterisiert; die dazu erforderlichen spektroskopischen Ausrüstungen wurden in früheren Arbeiten ausführlich beschrieben [15].

2. Elementaranalysen führte die Fa. A. Bernhardt, Elbach über Engelskirchen, durch.

3. Ausgangsverbindungen

(a) Tris(dimethylamino)phosphin, $P(NMe_2)_3$, wurde nach einer modifizierten Vorschrift von Burg et al. [22] dargestellt und durch fraktionierte Destillation gereinigt: Sdp. 48°C/10 Torr.

(b) Metallorganische Diazoalkane wurden nach folgenden Literaturvorschriften erhalten: Me₃SiCHN₂ [3]; [Me₃Si]₂CN₂ [23]; Me₃SiC(N₂)CO₂Et [23]; Me₃GeC(N₂)CO₂Et [20]; (Me₃Sn)₂CN₂ [20]; Me₃SnC(N₂)CO₂Et [24]; (Me₃Pb)₂CN₂ [20]; Me₃PbC(N₂)CO₂Et [25]; (Me₂As)₂CN₂ [15]; Me₂AsCHN₂ [12]; (Me₂Sb)₂CN₂ [15]; Me₂SbC(N₂)CO₂Et [15]; Me₂BiC(N₂)CO₂Et [15]; (MeHg)₂CN₂ [26]; MeHg(CN₂)CO₂Et [26]; MeHgC(N₂)C(O)C₆H₅ [27]; Hg[C(N₂)CO₂Et]₂ [26].

(c) Me_3GeNMe_2 . Abweichend von der Darstellung aus Me_3GeBr und LiNMe₂ [28], die nur mit 20% Ausbeute abläuft, wird wie folgt verfahren: Zu einem Überschuss von HNMe₂ werden 100 mmol n-BuLi, gelöst in n-Hexan, zugetropft, 0.5 Std. gerührt und anschliessend im Vakuum vollständig zur Trockne gebracht. Das farblose LiNMe₂ wird in ca. 100 ml absol. Et₂O aufgeschlämmt und unter Eiskühlung 15 g (98 mmol) Me₃GeCl, gelöst in 20 ml abs. Et₂O, zugetropft. Dann wird langsam erwärmt und ca. 1 Std. unter heftigem Rühren refluxiert. Es wird im Eisbad abgekühlt, über eine G4-Fritte filtriert und frakt. destilliert: Sdp. 102–104°C/760 Torr. Ausbeute an reinem Me₃GeNMe₂: 11.35 g (71.6% d.Th.).

(d) Me_3GeCHN_2 . Abweichend von einer früheren Vorschrift für die Darstellung von (Me_3Ge)₂CN₂ [20] wurde wie folgt verfahren: Zu 6.11 g (37.8 mmol) Me_3GeNMe_2 wird ein Überschuss an CH₂N₂/Et₂O kondensiert. Das Gemisch wird auf -80°C thermostatisiert, das Kühlbad dann entfernt; 7.52 g (37.9 mmol) Me_3SnCl , gelöst in wenig Et₂O, werden unter Rühren zugetropft. Man lässt auf Raumtemperatur erwärmen und weitere 30 min rühren. Zur Vervollständigung des Niederschlags ($Me_3SnCl \cdot HNMe_2$) werden ca. 1 ml fl. HNMe₂ zugegeben, weitere 5 min gerührt, anschliessend mit einer auf -30° C gekühlten Fritte filtriert und das Filtrat fraktioniert destilliert: Me_3GeCHN_2 ist eine gelborange Flüssigkeit vom Sdp. 41°C/2 Torr. Ausbeute: 2.8 g (46.7% d.Th.) 17.7 mmol. Es bleibt ein orangegelber flüssiger Rückstand, der noch aus einem Gemisch $Me_3GeCHN_2/$ (Me_3Ge)₂CN₂ besteht, zurück. ¹H-NMR(C_6D_6): s. Tabelle 3; ¹³C-NMR (C_6D_6): $\delta(Ge-^{13}CH_3)$: 1.55; $\delta(Ge-^{13}CN_2)$: 19.77 ppm. IR-Spektrum s. Tabelle 2. Analyse: Gef.: C, 30.30; H, 6.34; Ge, 45.29; N, 17.43. $C_4H_{10}GeN_2$ ber.: C, 30.27; H, 6.35; Ge, 45.73; N, 17.65%.

(e) $(Me_3Ge)_2CN_2$. Zu 3.5 g (21.7 mmol) Me₃GeNMe₂ wurde ein grösser Überschuss CH₂N₂/Et₂O aufkondensiert; man lässt auf Raumtemperatur erwärmen, gibt 4.3 g (21.7 mmol) Me₃SnCl, gelöst in 25 ml Et₂O, langsam über einen Tropf trichter zu. Nach beendeter Zugabe wird noch 1 Std. gerührt und von Me₃-SnCl · HNMe₂ abgefrittet. Man lässt die ätherische, rotgefärbte Lösung über Nacht bei -26°C stehen; Et₂O/überschüss. CH₂N₂ wird bei Normaldruck abde-

TABELLE 2

3283ss	2480s	829m]
Kombination	Kombination	} ρ(CH ₃)
3200s	2400ss	800(Sch)
2		763s δ(CN ₂)
3040s]	2052st vas(CN2)	658s]
2972m v(CH3)	1410s v _{sym} (CH ₃)	607m > v(Ge-C)
2909m	1245st δ(CH3)	576m
د .	1159s Vsym(CN2)	J .

IR-SPEKTRUM (cm⁻¹) VON Me3GeCHN2 (kapillarer Film, CsJ-Schreiben)

stilliert, der flüssige Rückstand im Vakuum fraktioniert destilliert: Man erhält $(Me_3Ge)_2CN_2$ als hellgelbe Flüssigkeit, Sdp. 48–50°C/1 Torr. Ausbeute: 2.05 g (69% d.Th.). ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: gef.: C, 30.25; H, 6.53; Ge, 52.38; N, 10.01. C₇H₁₈Ge₂N₂ ber.: C, 30.53; H, 6.59; Ge, 52.71; N, 10.17%.

4. Phosphazine I-XV

 $(Me_2N)_3P=N-N=CH_2$ (1). Zu 2.56 g (15.7 mmol) P(NMe₂)₃ wurde bei --190°C ein Gemisch CH₂N₂/Et₂O (Überschuss) aufkondensiert, auf Raumtemperatur erwärmt und anschliessend 1 Std. gerührt. Im HV wurden flüchtige Bestandteile entfernt; es hinterbleiben farblose Kristalle vom Fp. 11°C. Ausbeute: 2.96 g (91.9% d.Th.). ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: gef.: C, 40.93; H, 9.60; N, 33.91; P, 14.91. C₇H₂₀N₂P ber.: C, 41.00; H, 9.75; N, 34.14; P, 15.11%.

 $(Me_2N)_3P=N-N=C(H)CO_2Et$ (II). Zu 4.36 g (26.7 mmol) P(NMe₂)₃, gelöst in 10 ml Et₂O wurden bei -20°C 3.04 g (26.7 mmol) HC(N₂)CO₂Et zugetropft; es wurde auf Raumtemperatur erwärmt und 30 min gerührt. Nach Abkondensieren des Lösungsmittels im HV bleiben schwach gelblich gefärbte Kristalle zurück; Fp. 49°C; Ausbeute: 6.6 g (89.2% d.Th.) ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 43.44; H, 8.48; N, 25.04; O, -; P, 11.02. C₁₀H₂₄N₂O₂P ber.: C, 43.35; H, 8.66; N, 25.27; O, 11.55; P, 11.17%.

 $(Me_2N)_3P=N-N=C(H)COMe$ (III). 0.62 g (7.4 mmol) Diazoketon werden in einer grösseren Menge n-Pentan gelöst und bei Raumtemperatur unter Rühren im Überschuss (3 ml) P(NMe₂)₃ zugegeben; das gebildete Phosphazin fällt als ölige Flüssigkeit aus, wird abgetrennt und im HV getrocknet. Die Substanz erstarrt zu hellbraunen Kristallen vom Fp. 31–32°C. Ausbeute: 1.73 g (94.6% d.Th.) (7.0 mmol). ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 43.63; H, 8.76; N, 28.04; O, -; P, 12.45. C₉H₂₂N₅OP ber.: C, 43.75; H, 8.90; N, 28.33; O, 6.48; P, 12.54%.

 $(Me_2N)_3P=N-N=C(H)COC_6H_5$ (*IV*). 0.33 g (2.3 mmol) Diazoketon, gelöst in wenig abs. Et₂O, werden unter Rühren mit einem Überschuss (3 ml) P(NMe₂)₃, ebenfalls gelöst in Et₂O, versetzt. Es erfolgt exotherme Reaktion unter Farbvertiefung. Nach Abziehen aller flüchtigen Bestandteile bleiben gelbe Kristalle zurück; Rohausbeute: 0.71 g (2.28 mmol) (99% d.Th.). Fp. 52–54°C; (Umkrist. aus Toluol/Oktan). ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C. 54.3; H, 8.0; N, 22.2; O, -; P, -. C₁₄H₂₄N₅OP ber.: C, 54.39; H, 7.76; N, 22.65; O, 5.18; P, 10.02%.

schuss CH_2N_2/Et_2O (trocken) zukondensiert, unter Rühren auf $-80^{\circ}C$ erwärmt, dann allmählich auf 0°C temperiert. Es fällt ein farbloser Niederschlag aus; flüchtige Bestandteile werden im Vakuum entfernt. Ausbeute 0.95 g, prakt. quantitativ (0.99 g, 100% d.Th.) farbloses Pulver, Fp. 87–88°C. Die Substanz ist extrem hygroskopisch und luftempfindlich. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 40.44; H, 9.14; N, 23.45; P, 26.11. C₄H₁₁N₂P ber.: C, 40.71; H, 9.32; N, 23.73; P, 26.24%.

 $(Me_2N)_3P=N-N=C(H)AsMe_2$ (VI). Zu 2.1 g (14.3 mmol) Me₂AsCHN₂ wird bei Raumtemperatur ein Überschuss (3.5 ml) P(NMe₂)₃ zugetropft; das Reaktionsgemisch erwärmt sich, die Farbe schlägt von rotorange nach gelb um. Flüchtige Bestandteile werden im HV abgezogen, es bleibt ein hellgelbes Öl zurück. Ausbeute: 4.1 g (93.7% d.Th.). Spektren: s. Lit. [12] und Tabelle 3 (¹H-NMR). Analyse: Gef.: C, 34.79; H, 8.08; As, 23.89; N, 22.69; P, 10.28. C₉H₂₅AsN₅P: C, 34.96; H, 8.09; As, 24.26; N, 22.67; P, 10.02%.

 $(Me_2N)_3P=N-N=C(AsMe_2)CO_2Et$ (VII). 4.9 g (22.5 mmol) Me₂AsC(N₂)CO₂Et und 3.66 g (22.5 mmol) P(NMe₂)₃ werden in Et₂O gelöst und 2 Std. gerührt. Im HV werden alle flüchtigen Komponenten entfernt, der Rückstand wird aus Pentan umkristallisiert: Gelbe Kristalle, Fp. 42-43°C. Ausbeute: 6.1 g (71.26% d.Th.). ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 37.95; H, 7.59; As, 19.46; N, 18.24; O, 8.12; P, 8.03. C₁₂H₂₉AsN₅O₂P ber.: C, 37.80; H, 7.67; As, 19.65; N, 18.37; O, 8.39; P, 8.12%.

 $(Me_2N)_3P=N-N=C(SbMe_2)CO_2Et$ (VIII). 3.7 g (14 mmol) Me₂SbC(N₂)CO₂Et und ein Überschuss (5 ml) P(NMe₂)₃ wurden 1 Std. in Pentan refluxiert. Beim abkühlen auf -5°C fallen gelbe Kristalle aus, die in einer Siebfritte von öligen Bestandteilen getrennt werden. Die Kristalle werden mehrmals mit sehr kaltem n-Pentan gewaschen. Ausbeute: 3.2 g (7.4 mmol) (53.5% d.Th.). Fp. 37-39°C. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 34.45; H, 6.60; N, 16.50; O, 7.17; P, 7.24; Sb, 28.60. C₁₂H₂₉N₂PO₂Sb ber.: C, 33.67; H, 6.78; N, 16.37; O, 7.48; P, 7.24; Sb, 28.46%.

 $(Me_2N)_3P=N-N=C(HgMe)CO_2Et$ (IX). 1.62 g (4.93 mmol) MeHgC(N₂)CO₂Et werden in wenig Et₂O gelöst, dann wird ein Überschuss (5 ml) P(NMe₂)₃ zugetropft. Nach 2 Std. Reaktionszeit werden im HV flüchtige Komponenten abgezogen; es hinterbleibt ein hochviskoses, gelbbraunes Öl, das nach 12 Std. bei -25°C zu gelben Kristallen erstarrt. Die Ausbeute ist quantitativ. Fp. 47°C; die Substanz lässt sich aus n-Oktan umkristallisieren. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 26.75; H, 5.39; Hg, 40.96; N, 14.06; O, 6.10; P, 6.19. C₁₁H₂₆HgN₂O₂P ber.: C, 26.85; H, 5.29; Hg, 40.80; N, 14.24; O, 6.51; P, 6.31%.

 $(Me_2N)_3P=N-N=C(HgMe)C(O)Me$ (X). 0.51 g (1.7 mmol) MeHgC(N₂)C(O)Me werden in wenig Et₂O aufgeschlämmt und unter Rühren mit einem Überschuss an P(NMe₂)₃ versetzt. Der Niederschlag hat sich nach wenigen Minuten aufgelöst; nach 1 Std. werden flüchtige Reaktionskomponenten im HV abgezogen. Es hinterbleibt ein gelber, kristalliner Feststoff; Rohausbeute: 0.77 g (98.0% d.Th.) (1.68 mmol). Fp. nach Umkristallisation aus n-Oktan/Toluol 64°C. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 25.5; H, 5.1; Hg, -; N, 14.9; O, -; P, -. C₁₀H₂₄HgN₂OP ber.: C, 26.02; H, 5.20; Hg, 43.45; N, 15.16; O, 3.46; P, 6.71%.

 $(Me_2N)_3P=N-N=C(HgMe)C(O)C_6H_5$ (XI). 0.4 g (1.11 mmol) MeHgC(N₂)C(O)-C₆H₅ werden in 5 ml Et₂O aufgeschlämmt und unter Rühren mit einen Überschuss an P(NMe₂)₃ (3 ml) langsam tropfenweise versetzt; innerhalb weniger Minuten

Verbindungen: Phosphazine					Q	Q
	6(NCH3) 3J(³¹ P,NCH3)	6 (N=CH) (cia) 4 _J (3 ¹ P,N=C- <u>H</u>) (cia)	6(N=C-H) (1rans) 4 ₁ (³¹ F,N=C-H) ((rans)	6(М-СЦ ₃) ^a 2J(Hg-C <u>Ц</u> 3)	6(-C 0-CH2-CH3) 5(-C 0-CH2-CH3)	⁶
(Me ₂ N) ₃ P=N-N=CH ₂ (I)	2.51d 9.5	7.27/2d 2.5	6,13/2d 5			
(Mo2N)3P=N-N=C(H)CO2Et (II)	2.45d 9,5	8,07d 2.5			4.17qu 1.04tr	
(Me1N)3P=N-N=C(H)C(0)Me (III)	2.47d 9.5	8,25d 2,5				2,525
(Me1N)3P=N-N=C(H)C(0)C6H5 (IV)	2.35d 9.5	8.55d 2.5				8.3m/7.23n
Me3P=N-N=CH2 (V)	1,13d b 13	7,33/2d 2,5	6.27/2d 3.5			
(Me2N)3P=N-N=C(H)AªMe2 (VI)	2.50d 9.5	8,43d 2,5	7,37d 5	trans: 1.01s cls : 1.16s		
(Me2N)3P=N-N=C(AaMe2)CO2Et (VII)	2.37d 9			1. b s	4.12qu 1,08tr	

TABELLE 3

28

Me ₂ N) ₃ P=N-N=C(HgMe)CO ₂ Et (IX) 2.43d 9.5 Me ₂ N) ₃ P=N-N=C(HgMe)C(O)Me (X) 2.37d 9.5 Me ₂ N) ₃ P=N-N=C(HgMe)C(O)C ₆ H ₅ (XI) 2.28d 9 Me ₂ N) ₃ P=N-N=C(HgC(N ₂)CO ₂ Et) (XII) 2.38d			1,23s	1.1tr		
Me ₂ N) ₃ P=N-N=C(HgMe)C(O)Me (X) 2.37d 9.5 Me ₂ N) ₃ P=N-N=C(HgMe)C(O)C ₆ H ₅ (XI) 2.28d 9 Me ₂ N) ₃ P=N-N=C(HgC(N ₂)CO ₂ Et) (XII) 2.38d 9			1,13 0,48	4,23qu 1,13tr		
Me2N)3P=N-N=C(HgMe)C(O)C ₆ H ₅ (XI) 2.28d 9 Me2N)3P=N-N=C[HgC(N ₂)CO2Et] (XII) 2.38d 9			0.38s 111		2.58	
GO2Et Me2N)3P=N−N=C[H≰C(N2)CO2Et] (XII) 2.38d 9			0,45s 112		8.2m/7.2m	
-			· · · :	4.18qu/4.05qu 1.12tr/1.00tr		
CO2Et (Me2N)3P=N-N=C-12Hg (XIII) 2.48d 9.5				4.2qu 1.1tr		
(Me2N)3P=N-N=C(H)GeMe3 (XIV) 2.55d 8.35d 9.5 2.5	8,35d 2,5		0,38s			
(Me2N)3P=N−N=C(H)SIMe3 (XV) 2.60d 8.35d 7.1	8.35d	7.5d	cls ; 0,39s trans; 0,57s	•		
9 Z.D G Germanlumdiazoaikane	2,5	9				
Meg GeCHN2 Mar Genacina	2,38s c		0,15s 0,22s			
	یان میں میں اور میں اور میں دوروں ہوتا ہوتا ہے۔ اور	والمراجع والمراجع والمراجع والمراجع والمراجع	د هاد و در و			

a M = A4, Sb, Hg, Ge, Sl. ^b 5(P-CH₃), ²J(³¹ P,CH₃), ^c 5(GeCHN₂).

löst sich der Niederschlag auf. Nach 1 Std. werden flüchtige Bestandteile entfernt, es bleibt ein gelber Feststoff zurück. Rohausbeute: 0.58 g (99% d.Th.). Nach Umkristallisation aus Toluol/n-Oktan Fp. 72°C. ¹H-NMR (C_6D_6): s. Tabelle 3. Analyse: Gef.: C, 34.3; H, 4.9; Hg, –; N, 13.1; O, –; P, –. $C_{15}H_{26}HgN_2OP$ ber.: C, 34.4; H, 4.97; Hg, 38.30; N, 13.37; O, 3.05; P, 5.91%.

 $Hg[C(N_2)CO_2Et]_2 \times P(NMe_2)_3$ (XII). Zu einer Aufschlämmung von 1.54 g (3.61 mmol) Hg[C(N_2)CO_2Et]_2 in Et_2O werden unter Rühren 0.588 g (3.61 mmol) P(NMe_2)_3, gelöst in wenig Et_2O, zugetropft. Der gelbe Feststoff löst sich auf; nach 10 min Rühren wird das Lösungsmittel im HV abgezogen, es bleibt eine ölige Substanz zurück, die nach einigen Minuten auskristallisiert. Ausbeute: 2.13 g (100% d.Th.). Fp. 103°C. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 28.4; H, 4.6; Hg, 34.00; N, 16.5; O, 10.44; P, 5.29. C₁₄H₂₈HgN₄O₄P ber.: C, 28.49; H, 4.75; Hg, 34.02; N, 16.62; O, 10.86; P, 5.26%.

 $Hg[C(N_2)CO_2Et]_2 \times 2P(NMe_2)_3$ (XIII). Zu einer Aufschlämmung von 1.12 g (2.63 mmol) Hg[C(N_2)CO_2Et]_2 in Et_2O werden 0.86 g (5.28 mmol) P(NMe_2)_3, gelöst in wenig Et_2O zugetropft, der gelbe Niederschlag löst sich schnell auf. Nach HV-Trocknung bleiben 1.95 g (98.5% d.Th.) gelbe Kristalle zurück. Umkristallisation aus n-Oktan/Toluol ergibt einen Fp. 93°C. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 31.77; H, 6.11; Hg, 26.52; N, 18.40; O, 8.14; P, 8.30. C₂₀H₄₆HgN₁₀O₄P₂ ber.: C, 31.89; H, 6.11; Hg, 26.66; N, 18.60; O, 8.50; P, 8.24%.

 $(Me_2N)_3P=N-N=C(H)GeMe_3$ (XIV). Zu 0.4 g (2.52 mmol) Me_3GeCHN₂ wurde ein Überschuss (5 ml) P(NMe₂)₃ zugegeben und das Reaktionsgemisch 24 Std. bei Raumtemperatur belassen. Im Hochvakuum wurden flüchtige Bestandteile abgezogen; es bleiben farblose Kristalle vom Fp. 22–23°C zurück. Ausbeute: 0.79 g (97.5% d.Th.) (2.46 mmol). ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 37.01; H, 8.34; Ge, 22.46; N, 21.66; P, 9.85. C₁₀H₂₈GeN₅P ber.: C, 37.31; H, 8.71; Ge, 22.57; N, 21.77; P, 9.64%.

 $(Me_2N)_3P=N-N=C(H)SiMe_3$ (XV). Zu 4.6 g (40.4 mmol) Me₃SiCHN₂ wurde ein Überschuss (5 ml) von P(NMe₂)₃ zugegeben und ca. 24 Std. bei Raumtemperatur belassen. Im HV wurde überschüssiges P(NMe₂)₃ abgezogen, es hinterbleibt eine ölige, schwach gelblich gefärbte Flüssigkeit. Ausbeute: 10.5 g (\approx 95% d.Th.). Sdp. 85–90°C/0.01 mmHg; Fp. ± –10°C. ¹H-NMR (C₆D₆): s. Tabelle 3. Analyse: Gef.: C, 43.12; H, 10.07; N, 25.00; P, 11.01; Si, 10.37. C₁₀H₂₈N₅PSi ber.: C, 43.30; H, 10.17; N, 25.25; P, 11.16; Si, 10.12%.

Dank

Die vorgelegten Untersuchungen wurden aus Mitteln des Fachbereichs Chemie der Philipps-Universität, Marburg/Lahn, durchgeführt.

Gefördert wurden unsere Arbeiten vor allem aber durch Forschungsbeihilfen der Deutschen Forschungsgemeinschaft (für P.K.) und des "VCI, Fonds der Chemischen Industrie e.V." (für J.L.); den genannten Institutionen sei hiermit unser Dank ausgesprochen.

Literatur

1 W. Kirmse, Carbene, Carbenoide und Carbenanaloge, Verlag Chemie, Weinhem, 1969.

2 R.N. Haszeldine, D.L. Scott und A.E. Tipping, J. Chem. Soc. Perkin I, (1974) 1440.

- 3 D. Seyferth, A.W. Dow, H. Menzel und T.C. Flood, J. Amer. Chem. Soc., 90 (1968) 1080.
- 4 U. Schöllkopf, D. Hoppe, N. Rieber und V. Jacobl, Liebigs Ann. Chem., 730 (1969) 1.
- 5 R. Huisgen, Angew. Chem., 9 (1968) 329.
- 6 R. Grüning, Diplomarbeit, Universität Marburg/L., 1973.
- 7 H. Staudinger und G. Lüscher, Helv. Chim. Acta, 5 (1922) 75.
- 8 H.J. Bestmann, H. Buckschewski und H. Leube, Chem. Ber., 92 (1959) 1345.
- 9 W. Ando, A. Sekiguchi, J. Ogiwara und T. Migita, J.C.S. Chem. Commun., (1975) 145.
- 10 W.A. Herrmann, J. Organometal. Chem., 97 (1975) 1. W.A. Herrmann, Chem. Ber., 108 (1975) 486.
- 11 R. Grüning, Dissertation, Universität Marburg/L., 1975.
- 12 P. Krommes und J. Lorberth, J. Organometal. Chem., 110 (1976) 195.
- 13 W. Ried und H. Appel, Liebigs Ann. Chem., 679 (1964) 56.
- 14 P. Krommes und J. Lorberth, J. Organometal. Chem., 97 (1975) 59.
- 15 P. Krommes und J. Lorberth, J. Organometal. Chem., 93 (1975) 339.
- 16 P. Krommes und J. Lorberth, J. Organometal. Chem., 120 (1976) 131.
- 17 A. Fadini, P. Krommes und J. Lorberth, unveröffentlichte Ergebnisse 1976; sowie H. Vermeer, P. Krommes und J. Lorberth, Veröffentl. in Vorbereitung.
- 18 H. Goldwhite, P. Gysegem, St. Schow und Ch. Swyke, J. Chem. Soc. Dalton, (1975) 16.
- 19 P. Krommes, Dissertation, Universität Marburg/L., 1975.
- 20 M.F. Lappert, J. Lorberth und J.S. Poland, J. Chem. Soc. A, (1970) 2954.
- 21 E. Glozbach, Diplomarbeit, Universität Marburg/L., 1976.
- 22 A.B. Burg und P.J. Slota jr., J. Amer. Chem. Soc., 80 (1958) 1107.
- 23 D. Seyferth und T.C. Flood, J. Organometal. Chem., 29 (1971) C25.
- 24 J. Lorberth, J. Organometal. Chem., 15 (1968) 251.
- 25 R. Grüning und J. Lorberth, J. Organometal. Chem., 78 (1974) 221.
- 26 J. Lorberth, J. Organometal. Chem., 27 (1971) 303.
- 27 G. Lange, Diplomarbeit, Universität Marburg/L., 1972.
- 28 J. Mack und C.H. Yoder, Inorg. Chem., 8 (1969) 278.